

Today's Journey

- ♦ What is NASA's mission?
- Why do we explore?
- What is our time line?
- Why the Moon first?
- ♦ What will the vehicles look like?
- What progress have we made?
- Who is on our team?
- What are the benefits of space exploration?

What is NASA's Mission?

- Safely fly the Space Shuttle until 2010
- Complete the International Space Station (ISS)
- Develop a balanced program of science, exploration, and aeronautics
- Develop and fly the Orion Crew Exploration Vehicle (CEV)
- ♦ Land on the Moon no later than 2020
- Promote international and commercial participation in exploration

"The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect."

- NASA Administrator Michael Griffin October 24, 2006

Why Do We Explore?

Inspiration

 Inspire students to explore, learn, contribute to our nation's economic competitiveness, and build a better future

Innovation

 Provide opportunities to develop new technologies, new jobs, and new markets

Discovery

 Discover new information about ourselves, our world, and how to manage and protect it

NASA's Exploration Roadmap

The Moon

Lunar missions allow us to:

- Gain exploration experience
 - Space no longer a short-term destination
 - Will test human support systems
 - Use Moon to prove ability to build and repair long-duration space assets
- Develop exploration technologies
 - Launch and exploration vehicles
 - *In-situ* resource utilization
 - Power and robotic systems
- Conduct fundamental science
 - Astronomy, physics, astrobiology, geology, exobiology

The Next Step in Fulfilling Our Destiny as Explorers

National Aeronautics and Space Administration

APO AmbStandB

There Are Many Places To Explore

South Pole

Near Side

Far Side

Our Exploration Fleet What will the vehicles look like?

Ares V
Cargo Launch
Vehicle

Ares I
Crew Launch
Vehicle

Orion
Crew Exploration
Vehicle

Altair Lunar Lander

Building on a Foundation of Proven Technologies - Launch Vehicle Comparisons -

Space Shuttle

Height: 56.1 m (184.2 ft) Gross Liftoff Mass: 2,041,166 kg (4.5M lbm)

25 MT (55k lbm) to Low Earth Orbit (LEO)

Ares I

Height: 99.1 m (325 ft) Gross Liftoff Mass: 927,114 kg (2.0M lbm)

Ares V

Height: 109.7 m (360.5 ft) Gross Liftoff Mass: 3,374,875 kg (7.4M lbm)

25.6 MT (56.5k lbm) to LEO 63.6 MT (140.2k lbm) to TLI (with Ares I) 55.9 MT (123k lbm) to Direct TLI ~143.4 MT (316k lbm) to LEO

Saturn V

Height: 110.9 m (364 ft) **Gross Liftoff Mass:** 2,948,350 kg (6.5M lbm)

45 MT (99k lbm) to TLI 119 MT (262k lbm) to LEO

Overall Vehicle Height, m

30 m (100 ft)

Ares I Elements

Instrument Unit

- Primary Ares I control avionics system
- NASA Design /
 - Boeing Production (\$0.8B)

Stack Integration

- 927k kg (2.0M lbm) gross liftoff weight
- 99 m (325 ft) in length
- NASA-led

First Stage

- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- ATK Launch Systems (\$1.8B)

Upper Stage

- 137k kg (305k lbm) LOX/LH₂ stage
- Aluminum-Lithium (Al-Li) structures
- control for first stage flight

Upper Stage Engine

Interstage

- Saturn J–2 derived engine (J–2X)
- Expendable
- Pratt and Whitney Rocketdyne (\$1.2B)

• 5.5 m (18 ft) diameter

Instrument unit and interstage

• Reaction Control System (RCS) / roll

Primary Ares I control avionics system

NASA Design / Boeing Production (\$1.12B)

Orion Crew Exploration Vehicle

Launch **Abort** System **Attitude Control Motor** -(Eight Nozzles)

Canard Section (Stowed Configuration)

Jettison Motor -(Four Aft, Scarfed Nozzles)

Abort Motor (Four Exposed, Reverse Flow Nozzles)

Crew Module

Volume: 10.8 m³ (380 ft³)

- 80% larger than Apollo

Diameter: 50 m (16.5 ft)

Encapsulated Service

Service Module

Spacecraft Adapter

Ares V Elements

Stack Integration

- 3.4M kg (7.4M lbm) gross liftoff weight
- 110 m (360 ft) in length

First Stage

 Two recoverable 5-segment PBAN-fueled boosters (derived from current Ares I first stage)

Core Stage

EDS

J-2X

Loiter Skirt

Earth Departure Stage (EDS)

- One Saturn-derived J–2X LOX/LH₂ engine (expendable)
- 10 m (33 ft) diameter stage

Payload

Fairing

- Aluminum-Lithium (Al-Li) tanks
- Composite structures, instrument unit and interstage
- Primary Ares V avionics system

Interstage

- Five Delta IV-derived RS–68 LOX/LH₂ engines (expendable)
- 10 m (33 ft) diameter stage
- Composite structures

What Progress Have We Made?

Programmatic Milestones

- Completed Ares I System Requirements Reviews
- Contracts awarded for building the first stage, J–2X engine, upper stage, instrument unit, and Orion
- Completed Ares I System Definition Review
- Ares I–X test flight scheduled for April 2009

Technical Accomplishments

- Testing first stage parachutes and developing nozzles
- Constructing new J–2X test stand at Stennis Space Center
- Performing J–2X injector tests and power pack tests
- Fabricating Ares I–X hardware
- Testing in wind tunnels

"Roughing" of 1% Model

Ares I–X Test Flight

- Demonstrate and collect key data to inform the Ares I design:
 - Vehicle integration, assembly, and launch operations
 - Staging/separation
 - Roll and overall vehicle control
 - Aerodynamics and vehicle loads
 - First stage entry dynamics for recovery

Performance Data:

First Stage Max. Thrust (vacuum):

Max. Speed:

Staging Altitude:

Liftoff Weight:

Length:

Max. Acceleration:

Ares I-X

14.1M N (3.13M lbf)

Mach 4.7

39,624 m (130,000 ft)

834k kg (1.8M lbm)

99.1 m (327 ft)

2.46 g

Ares I

15.8M N (3.5M lbf)

Mach 5.84

57,453 m (188,493 ft)

927k kg (2.0M lbm)

99 m (325 ft)

3.79 g

Down-to-Earth Benefits from the Space Economy

NASA powers innovation that creates new jobs, new markets, and new technologies.

- Personal Health
 - Eye tracker for LASIK surgery
 - Breast biopsy system

Consumer Products

- Wireless light switch
- Remote appliance programmer
- Global Positioning Systems (GPSs)

Environmental

- Water Filtration system
- Environmentally friendly chemical cleanup

Security

- Stair-climbing tactical robot
- Crime scene video enhancement

For more information see http://technology.jsc.nasa.gov

Every Dollar Invested in Space is Spent on Earth.

APO AmbStandBri

NASA Explores for Answers that Power Our Future

NASA powers inspiration that encourages future generations to explore, learn, and build a better future.

- NASA relies on a well-educated U.S. workforce to carry out missions of scientific discovery that improve life on Earth.
- America's technological edge is diminishing.
 - Fewer engineering graduates from U.S. colleges and universities
 - More engineering and science graduates in other countries
- The global marketplace is increasingly competitive and technology-driven.
- Students need motivating goals and teachers with information to share.
- NASA continues to develop educational tools and experiences that inspire, educate, and motivate.

Summary

- Human beings will explore the Moon, Mars, and beyond to encourage inspiration, innovation, and discovery.
- We must build beyond our current capability to ferry astronauts and cargo to low Earth orbit.
- We are starting to design and build new vehicles, using extensive lessons learned to minimize cost, technical, and schedule risks.
- Exploring the Moon will help us reach Mars and beyond.
- ◆ Team is onboard and making good progress—the Ares I–X test flight is on schedule for April 2009.

APO AmbStandBr

